Demonstration of an optical quantum controlled-NOT gate without path interference.
نویسندگان
چکیده
We report the first experimental demonstration of an optical quantum controlled-NOT gate without any path interference, where the two interacting path interferometers of the original proposals have been replaced by three partially polarizing beam splitters with suitable polarization dependent transmittance and reflectance. The performance of the device is evaluated using a recently proposed method, by which the quantum process fidelity and the entanglement capability can be estimated from the 32 measurement results of two classical truth tables, significantly less than the 256 measurement results required for full quantum tomography.
منابع مشابه
Deterministic controlled-NOT gate for single-photon two-qubit quantum logic.
We demonstrate a robust implementation of a deterministic linear-optical controlled-not gate for single-photon two-qubit quantum logic. A polarization Sagnac interferometer with an embedded 45 degrees -oriented dove prism is used to enable the polarization control qubit to act on the momentum (spatial) target qubit of the same photon. The optical controlled-not gate requires no active stabiliza...
متن کاملInvestigation and Simulation of the Effects of Dispersion and Transmittance angles on the Solar Cells Quantum Efficiency
In this paper the effects of transmittance, dispersion angle and diffusion length on the quantum efficiency of solar cells (QESC) have been simulated and investigated. Optical path technic is used for simulation. The results show that base thickness, diffusion length, dispersion angle, number of optical confinement path and transmission angles have an extremely effects on the QESC. Simulation r...
متن کاملExperimental teleportation of a quantum controlled-NOT gate.
Teleportation of quantum gates is a critical step for the implementation of quantum networking and teleportation-based models of quantum computation. We report an experimental demonstration of teleportation of the prototypical quantum controlled-NOT (CNOT) gate. Assisted with linear optical manipulations, photon entanglement produced from parametric down-conversion, and postselection from the c...
متن کاملHong-Ou-Mandel interferometer with cavities: theory
We study the number of coincidences in a Hong-Ou-Mandel interferometer exit whose arms have been supplemented with the addition of one or two optical cavities. The fourth-order correlation function at the beam-splitter exit is calculated. In the regime where the cavity length are larger than the one-photon coherence length, photon coalescence and anti-coalescence interference is observed. Feynm...
متن کاملSilica-on-silicon waveguide quantum circuits.
Quantum technologies based on photons will likely require an integrated optics architecture for improved performance, miniaturization, and scalability. We demonstrate high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference with a visibility of 94.8 +/- 0.5%; a controlled-NOT gate with an average logical basis fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 95 21 شماره
صفحات -
تاریخ انتشار 2005